In mathematics, the trigonometric functions are functions of an angle important when studying triangles and modeling periodic phenomena. They may be defined as ratios of two sides of a right triangle containing the angle, or, more generally, as ratios of coordinates of points on the unit circle, or, more generally still, as infinite series. All three approaches will be presented below.
These are the six basic trigonometric functions, together with their standard notational abbreviations. The last four functions are defined in terms of the first two. In other words, the four equations below are definitions, not proved identities.
- Sine (sin)
- Cosine (cos)
- Tangent (tan = sin / cos)
- Secant (sec = 1 / cos)
- Cosecant (csc = 1 / sin)
- Cotangent (cot = cos / sin)
Table of contents |
2 Computing 3 Unit circle definitions 4 Series definitions 5 Inverse functions 6 Properties and applications 7 History |
Right triangle definitions
We use the following names for the sides of the triangle:
- The hypotenuse is the side opposite the right angle, in this case c.
- The opposite side is the side opposite to the angle we are interested in, in this case a.
- The adjacent side is the side that is a leg of the angle, but not the hypotenuse, in this case b.
1). The sine of an angle is the ratio of the length of the opposite side to the length of the hypotenuse. In our case
- sin(A) = opp/hyp = a/c.
2). The cosine of an angle is the ratio of the length of the adjacent side to the length of the hypotenuse. In our case
- cos(A) = adj/hyp = b/c.
- tan(A) = opp/adj = a/b.
4). The cosecant csc(A) is the multiplicative inverse of sin(A), i.e. the ratio of the length of the hypotenuse to the length of the opposite side:
- csc(A) = hyp/opp = c/a.
- sec(A) = hyp/adj = c/b.
- cot(A) = adj/opp = b/a.
Computing
The values of the trigonometric functions have been tabulated and can also be computed by calculator. For some simple angles, the values can be computed by hand, as in the following examples:
Suppose we have a right triangle where the two other angles are equal, and therefore = 45 degrees (π/4 radians). Then the length of side b and the length of side a are equal; we can choose a = b = 1. Now, one can determine the sine, cosine and tangent of an angle of 45 degrees. Using the Pythagorean Theorem, c = √(a^{2} + b^{2}) = √2. This is illustrated in the following figure:
Therefore,
Unit circle definitions
The six trigonometric functions can also be defined in terms of the unit circle, the circle of radius one centered at the origin. The unit circle definition provides little in the way of practical calculation; indeed it relies on right triangles for most angles. The unit circle definition does, however, permit the definition of the trig functions for all positive and negative arguments, not just for angles between 0 and π/2 radians. It also provides a single visual picture that encapsulates at once all the important triangles we have used so far.
The equation for the unit circle is:
In the picture, some common angles, measured in radians, are given. Note that we measure angles positive in the counter clockwise direction and angles negative in the clockwise direction. Let a line making an angle of θ with the positive half of the x-axis intersect the unit circle. The x- and y-coordinates of this point of intersection are equal to cos θ and sin θ, respectively. The triangle in the graphic reveals the reason: the radius is equal to the hypotenuse and has length 1, so we have sin θ = y/1 and cos θ = x/1. The unit circle can be thought of as a way of looking at an infinite number of triangles by varying the lengths of their legs but keeping the lengths of their hypotenuses equal to 1.
For angles greater than 2π or less than -2π simply continue to rotate around the circle. In this way, sine and cosine become periodic functions with period 2π:
Though only sine and cosine were defined directly by the unit circle, the other four trig functions can be defined by
Series definitions
Here, and generally in calculus, it is of utmost importance that all angles are measured in radians. One may then define
By allowing the arguments of the sine and cosine function to be complex, it can be shown that they are the imaginary and real parts of the complex exponential function, respectively. This relationship was first noted by Euler and the equation expressing the relationship is called Euler's formula. In this way, trigonometric functions become essential in the geometric interpretation of complex analysis. It is also shown that exponential processes are intimately linked to periodic behavior.
Inverse functions
For inverse trigonometric functions, the notations sin^{− 1} and cos^{− 1} are often used for arcsin and arccos, etc. When this notation is used, the inverse functions are often confused with the multiplicative inverses of the functions. Our notation avoids such confusion.
These functions may also be defined by proving that they are antiderivatives of other functions. Then each function is uniquely determined by its value at a single point:
Properties and applications
The trigonometric functions, as the name suggests, are of crucial importance in trigonometry, mainly because of the following two results:
The law of sines for an arbitrary triangle states:
- sin(A)/a = sin(B)/b = sin(C)/c
If the angle is not contained between the two sides, the triangle may not be unique. Be aware of this ambiguous case of the Sine Law.
The law of cosines is an extension to the Pythagorean theorem:
- c^{2} = a^{2} + b^{2} − 2ab cos(C)
There is also a law of tangents:
For a compilation of many relations between the trigonometric functions, see trigonometric identities.
An alternative use for trigonometric functions is to make pretty patterns such as Lissajous figures.
See also:
History
The earliest systematic study of trigonometric functions and tabulation of their values was performed by Hipparchus of Nicaea (180-125 B.C.), who tabulated the lengths of circle arcs (equivalent to an angle A times radius r) with the corresponding chords (equivalent to 2r sin(A/2) ). Later, Ptolemy (2nd century A.D.) expanded upon this work in his Almagest, deriving addition/subtraction formulas for the equivalent of sin(A+B) and cos(A+B). Ptolemy also derived the equivalent of the half-angle formula sin(A/2)^{2} = (1-cos(A))/2, allowing him to create tables with any desired accuracy. Neither the tables of Hipparchus nor of Ptolemy have survived to the present day.
The next significant development of trigonometry was in India, in the works known as the Siddhantas (4th-5th century A.D.), which first defined the sine as the modern relationship between half an angle and half a chord; the modern word "sine" comes from a mistranslation of the Hindu jiva. The Siddhantas also contains the earliest surviving tables of sine values (along with 1-cos values), in 3.75-degree intervals from 0 to 90 degrees.
The Hindu works were later translated and expanded by the Arabs, who by the 10th century (in the work of Abu'l-Wefa) were using all six trigonometric functions, and had sine tables in 0.25-degree increments, to 8 decimal places of accuracy, as well as tables of tangent values.
All of these earlier works on trigonometry treated it mainly as an adjunct to astronomy; the first treatment as a subject in its own right was by the De triangulis omnimodus (A.D. 1464) of Regiomontanus (A.D. 1436-1476), as well as his later Tabulae directionum (which included the tangent function, unnamed).
The Opus palatinum de triangulis of Rheticus, a student of Copernicus, was the first to define trigonometric functions directly in terms of right triangles instead of circles, with tables for all six trigonometric functions; this work was finished by Rheticus' student Valentin Otho in A. D. 1596.
The Introductio in analysin infinitorum (A.D. 1748) of Euler was primarily responsible for establishing the analytic treatment of trigonometric functions, defining them as infinite series and presenting "Euler's formula" e^{ix} = cos(x) + i sin(x). Euler used the near-modern abbreviations sin., cos., tang., cot., sec., and cosec..
- Carl B. Boyer, A History of Mathematics (Wiley, New York, 1991).